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FOREWORD

This research and development was conducted under contract N00123-81-D0794 in

support of Navy Decision Coordinating Paper ZI177-PN (Advanced Computer-Aided

Instruction), subproject Z1177-PN.03 (STEAMER: Advanced Computer-Based Training for

Propulsion and Problem Solving). It was sponsored by the Chief of Naval Operations (OP-

01). The main objective of the STEAMER effort is to develop and evaluate advanced

knowledge-based techniques for use in low-cost portable training systems. The project is

focused on propulsion engineering as a domain in which to investigate these computer-

based training techniques.

This report, the fourth in a series on the STEAMER project, describes a computer

language that allows the description of a set of objects, the composition of these objects

into complex system descriptions, and the simulation of the modelled system in a

qualitative manner. Previous reports described an initial framework for developing

techniques for automatically generating explanations of how to operate complex physical

devices, provided a user's manual for the STEAMER interactive graphics package, and

described a method for generating explanations using qualitative simulation (NPRDC TNs

81-21, 81-22, and 81-25 respectively). Intended users of these reports are system

maintainers and other research personnel.

Appreciation is extended to personnel at the Surface Warfare Officers School at

Newport, Rhode Island and the Propulsion Engineering School, Great Lakes, who

participated in several beneficial discussions about the nature of the training problem

being addressed in this R&D effort.

The contracting officer's technical representative was Dr. James D. Hollan.

JAMES F. KELLY, JR. JAMES 3. REGAN
Commanding Officer Technical Director
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SUMMARY

Problem

The main objective of the STEAMER effort is to develop and evaluate advanced

knowledge-based techniques for use in low-cost portable training systems. The project is

focused on propulsion engineering as a domain in which to investigate these computer-

based training techniques. One of the important problems of the STEAMER system is

generating explanations about the operation of propulsion plant components and sub-

systems.

Objective

This report describes CONLAN, a constraint-based programming language well suited

for describing and analyzing complex devices. The descriptions can be used to generate

understandable explanations and animate diagrams to explain the operation of complex

devices.

Results

CONLAN is a computer language based on the idea that a system to be modelled is

best described by specifying the constraints on the relationship of various parameters. An

example of such a constraint is the ideal gas law stating that pressure in a container is

proportional to temperature divided by volume. CONLAN enables the description of a set

of objects and the composition of these objects to describe complex systems such as

reducing valves and boiler control systems. Once described, the system can be simulated

qualitatively.

CONLAN has been used in STEAMER as a basis for generating coherent understand-

able explanations of the operation of propulsion plant devices from a qualitative

simulation of the device operation. These constraint-based, qualitative simulation

techniques make possible learning environments in which students can experiment with

complex devices and see explanations of the effects of various changes.
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INTRODUCTION

Problem

The main objective of the STEAMER effort is to develop and evaluate advanced

knowledge-based techniques for use in low-cost portable training systems. The project is

focused on propulsion engineering as a domain in which to investigate these computer-

based training techniques. One of the important problems of the STEAMER system is

generating explanations about the operation of propulsion plant components and sub-

systems.

Objective

This report describes CONLAN, a constraint-based programming language well suited

for describing and analyzing complex devices. The descriptions can be used to generate

understandable explanations and animate diagrams to explain the operation of complex

devices.

RESULTS

Complex systems are often modelled by describing their parts and the relationships

between these parts. These relationships are often expressed in mathematics as

constraint equations. Unlike normal computer languages, a constraint expression does not

include a prescription for its use. The statement 'Z = X + Y," for example, is just as much

about how to compute X given Y and Z as how to cormpute Z given X and Y.

Recently attention has been focused on making programs work in the same way.

CONLAN is such a constraint language. It was originally developed as a pedagogic tool to

describe in a general way the technique of propagation of constraints used in EL (Stallman

& Sussman, 1977) and other programs. The original version of CONLAN is described in

Steele and Sussman (1978), who provide c clear and concise exposition of the main ideas of

constraint languages.

While some of the syntax is the same, the language described here under the same

name is a serious working tool. Its power has been extended in several ways--many
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"hooks" have been added to enable it to be integrated into larger systems, and the

implementation is designed with efficiency in mind. It has been used in a program for

understanding motion (Forbus, 1980), generating English explanations of feedback devices

(Forbus & Stevens, 1981), conducting musical composition experiments, developing simple

qualitative physiological models, and implementing a fledgling "Naive Physics" describing

the processes in a steam plant.

Overview of CONLAN

The basic object in CONLAN is a constraint; that is, a structured description with

parameters. Constraints are created by instantiating prototypes and can be joined

together into networks to describe complex systems or situations.

Constraints are made up of cells and parts. Cells hold the values of the parameters

of the description. For example, a constraint describing a ball might include cells to hold

the X and Y coordinates of its position at some instant, a value constraint might include a

cell whose value indicates whether that valve is open or closed, and an inequality

constraint would include cells naming the quantities being related.

Parts of a constraint are themselves simpler constraints. For example, the ball

constraint mentioned above might contain a vector constraint to represent its velocity.

An inequality constraint would include a "Taxonomy" constraint that would insist that

exactly one of the possible relations Greater-Than, Less-Than, or Equal-To holds between

the quantities being compared. For a system of any complexity, there are typically

several levels of such embedding.

The cells and parts in a constraint are connected by sharing structure. For example,

in a real physical system, two pipes might be joined by having an end of one pipe welded

to the end of the other pipe, thus sharing a port between the two. When defining a

constraint prototype, a similar technique is used. To connect constraints into a network

that describes a complex situation, a mechanism that gives the effect of shared parts

without actually modifying the structures is used. This allows the constraints in a

network to be easily disconnected when required.
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A convenient notation for constraint networks is to draw constraints as objects and

cells .s terminals, as in logic diagrams. Shared parts can be delloted by "wiring" two pRirt%

together. These conventions are illustrated in Figure 1, where two adders have been

hooked up to form a three-input adder.

Figure 1. A simple constraint network: A three-input adder.

Relationships between the parameters in a constraint are enforced by a set of rules.

Each rule has some set of cells that must be known before it can be run (called the uses

set) and a cell that it will set if it runs successfully, called the set cell. The way to think

of these rules is as follows: "If one know the uses values, then one can compute the set

values." Rules can also return a special value that indicates an inability to come up with

a value for a particular set of input values, and to signal a complaint when an

inconsistency is discovered.

Computation within CONLAN is done by forward deduction as follows: When a cell is

given a value, each rule that uses it (the users) is examined to see if all cells in its uses

set are known. If they are, the rule is placed on a queue and eventually run. A rule may

return a value, indicate that it has failed to get a result, or signal a contradiction. If a

value is returned, it is placed in the set cell. If a contradiction occurs, a user procedure is

3



invoke( 'o analyze the difficulty. When a cell is set, a note is made of the rule that set it

(callec the informant) so that the reasons for each value may be determined. Setting

some new cell may in turn cause other rules to be queued, and the process continues until

no more rules remain on the queue.

Using the diagram convention above, rules are represented by circles. An arrow into

a circle denotes that the cell it comes from is used by the rule, and the single arrow out

of the circle points at the cell that could be set by that rule. A two-input adder, for

example, would contain three rules corresponding to the three ways it might be used.

These are illustrated in Figure 2.

(Constraint Adder ((Al cell)
(A2 cell)
(Sum cell))

(formulae
(Sum (AI A2) (+ Al A2))
(AI (Sum A2) (- Sum A2))
(A2 (Sum A2) (- Sum Al))))

Figure 2. An adder constraint with rules.

The advantage of the hierarchical structure of constraints is that the rules attached

to the simpler constraints work through shared cells to enforce the semantics of the

larger description. Thus, instead of writing all of the rules necessary to build a three-

input adder, one can simply "wire up" two two-input adders.

A special class of rules and cells is provided to facilitate the construction of complex

constraint networks. An indirect cell is one that holds another constraint, as opposed to a

value. References to parts that include this kind of cell can be made to act as if their

value were an actual part of the original constraint. Wirin rules are run when all of the

indirect cells they depend on are filled and specify which parts are to be connected to

each other and to the constraint of which the rules are a part. Making these connections

can result in new values being deduced, since some cells may now take on values. The
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dependence of values on these connections is stored so that, if the connection is broken,

the network will remain in a consistent state.

Specifying Constraints

This section describes the syntax of constraint prototypes and how to write them.

CONLAN is implemented in Lisp and that is reflected in the syntax. (For an introduction

to Lisp and its syntactic conventions, see Winston (1977) or Winston and Horn (1980).

Referencing

A uniform convention is used for referring to parts of a structure both within a

prototype description and for parts of a constraint network. For example, a list of the

form:

(>> isolation bypass main-steam-stop)

should be read as "The isolation of the bypass of the main-steam-stop." The depth of such

a reference can be arbitrary. If the values of indirect cells are being accessed, ">>i"

should be used instead.

Prototypes

A prototype is specified by a list whose first element is the keyword "CONSTRAINT"

and whose second element is a list of parts. ' Each element of the parts list specifies the

name of the part and the kind of thing it is. For example, an adder has three parts (Al,

A2, and SUM), each of which is a cell.

The rest of the prototype specification is some number of a set of special forms.

Formulae describes the rules that relate the cells of the constraint. Wiring describes the

interconnections that need to be made when indirects are known. If-Removed is used for

updating external representations. R== is used to specify shared parts. Each will be

described in turn.

1. Formulae. The formulae statement consists of a list of rules. Each rule is of the

form:

'The keyword "DEFBODY" is also provided if using a TAGS package is desired.
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(<set> <uses- <body>)

or

<name> <set> <uses> <body>)

where <set> ;-, -..ell the rule is intended to supply a value for, <uses> are tile other cells

in the constraint it uses, and <body> is a lisp expression in terms of the <uses> riarn-m

whose value is the result of the rule. The <name> form of the rule specification is mainly

provided for mnemonic value. It sometimes is useful when an external system runs and

analyzes the constraint net and must know how a value came about.

Two potential rule values are treated specially. The atom *DISMISS* means the rule

was unable to compute a value with the specific values of its input parameters, and so

none is assigned. The atom *LOSE* means the rule has detected an inconsistency, and a

contradiction should be signaled. If <set> is nil, then whatever value (except *LOSE*)

will be ignored. This convention is useful for rules that run for effect, such as

manipulating an external representation or looking for inconsistent situations. The

formulae statement is illustrated by the description of the multiplier constraint in Figure

3.

2. Wiring Rules. The wiring statement specifies how the values of indirect cells

should be connected once they are known. Each rule in the statement has the syntax:

(<uses> <form.-!. form-2> ... <form-n>)

The <uses> list contains both indirect cells and the names of parts of the constraint

being described that will be referred to within the rule. The rule is run whenever all the

indirect cells have values. The <form-i> are either equality statements between parts or

assignments of values to cells. To enable referencing the constraint from within its rules,

the atom $SELF always has the value of the constraint the rule is from when the rule is

run. While arbitrary Lisp code could be placed inside the wiring rule, equality statements

and assignments of values to cells are the only types whose consequences are

automatically retacted when the connection is broken (by forgetting the value of an

indirect cell). Figure 4 illustrates wiring rules.
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(defbody multiplier ((ml cell)
(m2 cell)
(product cell))

(formulae
(product (ml) (cond ((NEARLY-ZERO? ml) 0.0)

(t *dismiss*)))
(product (m2) (cond ((NEARLY-ZERO? m2) 0.0)

(t *dismiss*)))
(product (ml m2)(COND ((NOT (OR (NEARLY-ZERO? Ml)

(NEARLY-ZERO? M2)))
(times ml m2))
(T *DISMISS*)))

(ml (product m2) (cond ((not (NEARLY-ZERO? m2))
(quotient product m2))
(t (cond ((NEARLY-ZERO? product)

*dismiss*)
(t *lose*)))))

(m2 (product ml) (cond ((not (NEARLY-ZERO? ml))
(quotient product ml))

(t (cond ((NEARLY-ZERO? product)
*dismiss*)
(t *lose*)))))))

Figure 3. Prototype for a multiplier constraint.

(Constraint Same-Level-Numeric ((Containerl conlan-cell)
(Container2 conlan-cell)
(Level cell))

;;;Assumes level parameter of the containers it is given
;;;are numbers in a common global coordinate frame, and
;;;equates them - when one is known, the other is, and
;;;they must be consistent.
(Wiring ((Containerl Level) (== (>> Level Containerl)

Level))
((Container2 Level) (== (>> Level Container2)

Level))))

(Constraint Same-Level-Symbolic ((Containerl conlan-cell)
(Container2 conlan-cell)
(Comp comparator))

;;;Assumes global frame, but uses the level cell as a
;;;symbolic parameter. The comparator constraint asserts
;;;the equality in a global lattice and thus may enable
;;;other comparators to draw conclusions.
(Wiring ((Containerl Comp)

(Set-parameter (>> A comp)
(>> Level Containerl)))

((Container2 Comp)
(Set-parameter (>> B comp)

(>> Level Container2))))
;assert that whatever the levels are, they are equal.
fConstant 1>> Raia1-Tn? rnmni Tii

Figure 4. Same-level constraints with wiring rules.
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3. IF-REMOVED Statement. Sometimes it is necessary to use a constraint network

with another kind of representation, such as a diagram or inequality expert. Since the

body of a rule is a piece of Lisp code, it can perform bookkeeping by means of side

effects. However, some way must exist to undo these effects when the values used in the

rule are forgotten. The If-Removed statement allows this. The elements of If-Removed

statements are called "forget functions," and have the syntax:

(<trigger> <form-I> <form-2>. . . <form>)

The trigger can be either a cell or a named rule. When the trigger is forgotten, the

forms are evaluated from left to right. The environment for their evaluaiton includes

bindings for (1) $SELF, the constraint it belongs to, (2) $SET-CELL, the cell being set, (3)

$VALUE, the value in that cell, and (4) $INFORMANT, the name of the rule.

4. Sharing Structure. To specify shared structure in a prototype, the statement

(R== <ref-l> <ref-l> ... <ref-n>)

is used. 2  Each reference must evaluate to a cell and, during instantiation of the

prototype, only one thing will be created and given all of the names. Figure 5 shows a

prototype for a 3-Adder that illustrates R==.

(Constraint three-adder ((Al cell)
(A2 cell)
(A3 cell)
(Sum cell)
(Add I adder)
(Add2 adder))

(R== Al (>> Al Addl))
(R= = A2 (>> A2 Add0))

(R== (>> Sum Addl) (>> Al Add 2))
(R==A3 (>> A2 Add2))
(R== Sum (>> Sum Add2)))

Figure 5. A three-input adder made by sharing parts.

2As a mnemonic, think of this as "Really equal." If you are familiar with Lisp, think

of it as "Rplac-equal."
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Complex Parts and Prototypes

A constraint prototype normally has a fixed number of parts. This is not always

convenient. For example, one would not want to define a separate ADDER constraint

for each of the number of inputs desired. Two types of special prototypes are provided to

remedy this.

The first type is the Macro prototype. The user must define a Lisp macro that, when

called with a parameter, will generate a prototype with the appropriate number of parts.

For example,

(AND005 (And-gate 4))

in the parts list of a constraint prototype says that AND005 will be a four-input AND

gate. The macro call should either return the appropriate prototype, if it exists, or

otherwise build one.

Macro prototypes are not always sufficient. Consider building a description of a

container, including a description of the net flow of some fluid in the container. The

number of ports determines the net flow, and each of the ports must be connected to the

appropriate inputs of the net flow computation by sharing ports. A Dynamic prototype is

provided for this.

A Dynamic prototype is specified by a PROTOTYPE-NAME-GENERATOR, a STATIC

part, and a DYNAMIC part. The prototype name generator must parse the parameters of

the constraint. In the example above, the call might be

(Chamber3 (Chamber Fluid-Ports 4. Heat-Ports 2.)),

which says to build a chamber from a prototype with four fluid ports and two heat ports.

The static part contains the prototype specifications that are the same for all choices

of parameters. The dynamic part specifies the expansion parameters, what must be done

for each value of them, and what parts exist in common for all. A laborious example is in

Figure 6.
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Building Constraint Networks

There are two ways to build a network out of individual constraints. The first way is

to use indirect cells. The second is to equate parts. Equating parts makes the constraints

behave as if they were the same thing. The syntax is:

(== <ref> <ref>)

Unlike R==, the parts referred to can be any two things of the same type rather than

just cells. The equality mechanism actually works by making special equality constraints

hold between corresponding cells of the parts. The equality constraints contain two rules,

called "1<-2" and "2<-I," which place the value of one of the cells into the other as soon

as it is known. The connection can be broken by using UN==.

Running the Interpreter

Two examples of interaction with CONLAN are provided in Figures 7 and 8. In these

examples, ">>" is the interpreter prompt for more input, and indented lines are annota-

tions. The environment was initialized each time by calling (Conlan-Init). The function

call (Run-Constraints) starts the read-eval-propagate-print cycle. Figure 7 illustrates the

construction and debugging of a network to convert temperatures, and Figure 8, the

qualitative use of a gas law.
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;;;Containers have no defined flow direction, but
;;do have a certain capacity. The only way something
;;may enter or leave a container is by a port (either
;;fluid or thermal). This model does not include
;;metric properties of the ports nor the effects of
;;gravity.
;;

;;A chamber can have some number of fluid and thermal
;;ports, therefore it is a "dynamic" constraint.

(static-part chamber
(Parts (top cell) (bottom cell) (sidel cell)

(side2 cell) (capacity cell)
;;The above parts describe the geometry of
;;a chamber.
(contents conlan-cell)
(PC possible-contents)
(level cell)
(liquid-history chamber-fluid-history-computer)
(steam-history chamber-fluid-history-computer)
(air-history chamber-fluid-history-computer)
(thermal-history
chamber-thermal-history-computer)
(componentl cell)
(component2 cell)
(mix-type cell))

(wiring ((contents componentl component2 mix-type)
(= componentl (>> componentl contents))
( component2 (>> component2 contents))
(== mix-type (>> mixture-type contents))))

(R== (>> net-flow steam-flow-computer)
(>> net-flow steam-history))

(R== (>> net-flow air-flow-computer)
(>> net-flow air-history))

(R== (>> net-flow liquid-flow-computer)
(>> net-flow liquid-history))

(R== (>> net-flow heat-flow-computer)
(>> net-flow thermal-history)))

;;;Dynamic part of Chamber prototype
;;variables are denoted by "&&" prefix
;;fp=fluid ports
;;tp=thermal ports

Figure 6. Chamber prototype.
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(Dynamic-Part CHAMBER
(VARS (fluid-ports &&fp)

(heat-ports .&&tp))
(For-Each
&&fp ;Make parts necessary for each fluid port
(Parts ((&&fp . port) conlan-cell)

((&&fp . local-port) local-port)
((&&fp . MPT) Mixture-Touch-Computer))

(Wiring (((&&fp . port) (&&fp . local-port))
(set-parameter (>> port (&&fp local-port))

(&&fp . port))))
(Identities
(R== (&&fp . port)

(>> port (&&fp . local-port))
(>> (&&fp . port) steam-flow-computer)
(>> (&&fp . port) air-flow-computer)
(>> (&&fp . port) liquid-flow-computer))

(R== contents (>> contents (&&fp . MPT)))
(set-parameter (>> port (&&fp . MPT))

(&&fp . local-port))
(R== (>> air-flow-direction flow-senses

(&&fp . local-port))
(>> (&&fp . flow-direction)

air-flow-computer))
(R== (>> steam-flow-direction flow-senses

(&&fp . local-port))
(>> (&&fp . flow-direction)

steam-flow-computer))
(R== (>> liquid-flow-direction flow-senses

(&&fp . local-port))
(>> (&&fp . flow-direction)

liquid-flow-computer))))

;;Rest of the dynamic part

(For-Each
&&tp ;Make parts necessary for each thermal port
(Parts ((&&tp . heat-port) conlan-cell)

((&&tp . local-heat-port) local-heat-port))
(Identities
(R== (&&tp . heat-port)

(>> (&&tp . tport) heat-flow-computer))
(R== (>> flow-sense (&&tp . local-heat-port))

(>> (&&tp . flow-direction) heat-flow-computer))))
(In-Common
;Make shared parts with right number of terminals
(Wiring ((contents pc)

(== pc (>> pc contents))))
(Parts (steam-flow-computer

(net-flow-computer ports (&&limit &&fp)))
(air-flow-computer
(net-flow-computer ports (&&limit &&fp)))

(liquid-flow-computer
(net-flow-computer ports (&&limit &&fp)))

(heat-flow-computer
(net-flow-computer ports (&&limit &&tp))))))

Figure 6. (Continued).
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first start constraint interpreter

>(run-constraints)
->(create Fahrenheit 'cell)
G0002
-(create centigrade 'cell)
G0004

create the parts to perform the computation

->(create addl 'adder)
G0006
>>(create mull 'multiplier)
G0011
>(create mul2 'multiplier)
G0016

Now we connect them up

>>(== Fahrenheit (>> sum addl))
IDENTITY
->(set-parameter (>> al addl) 32.0)
32.0
-(== (- a2 addl) (>> product mull))
IDENTITY
>>(== (>> ml mull) centigrade)
IDENTITY
>>(== (-7 m2 mull) (-> ml mul2))
IDENTITY
>>(set-parameter (>> product mul2) 5.0)
5.0
>>(set-oarameter (> m2 mul2) q.0)
9.0
>>(set-parameter centiqrade 100.0)
100.0

>7(what-is Fahrenheit)

FAHRENHEIT = 87.555555
T

Oops! We can use dependencies to find the bug...

>(why Fahrenheit)
I used rule (1<-2 >> 1<=>2) on the followinq inputs:

(>> SUM ADD1)
(G0009)
-7(premises Fahrenheit)
(> M2 MUL2) = 9.0
(- PRODUCT MUL2) = 5.0
(> CENTIGRADE) - 100.0
(>> Al ADD14 = 32.0
T

Must switch the constants around-

>>(change-parameter (> m2 mull) 5.0)
5.0
>>(change-parameter (>- product mul2) 9.0)
9.0

Notice that Fahrenheit is already recomputed-

>>(what-is Fahrenheit)
FAHRENHEIT = 212.0
T
>>(un== (>- ml mull) centigrade)
T

removing a part can undo deductions-

>(what-is Fahrenheit)

Sorry, I don't know it.

rigure 7. Building a network for tcnperature conversion.
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-(create boyle 'gas-law)

G0007

The gas-law constraint encodes PV=KT in the IQ algebra

>7(partnames? boyle)
(PRESSURE TEMPERATURE VOLUME P1 P2)

P1 and P2 are adders that work with the IQ algebra.

(set-parameter (>> temperature boyle) 'c)
C
>>(set-parameter (>> volume boyle) 'd)
D
>>(what-is (7 pressure boyle))
(>> (Al P1 BOYLE) (PRESSURE BOYLE)) = U
NIL

Temperature constant, volume decreasing means the
pressure is increasing.

>(why (> pressure boyle))
I used rule (RULE-2 - P1 BOYLE) on the following inputs:

(- (SUM P2 BOYLE) (SUM P1 BOYLE))
(>> (A2 Pl BOYLE) (VOLUME BOYLE))

(G0012 G0010)

Why cites the rule directly responsible.

-(premises (>> pressure boyle))
(>> (A2 P1 BOYLE) (VOLUME BOYLE)) = D
(>> (Al P2 BOYLE) (TEMPERATURE BOYLE)) - C
T

Premises are the assumptions the user made.

>>(results (>> temperature boyle))
Rule (RULE-l . G0013) got (>> (SUM P2 BOYLE) (SUM P1 BOYLE)) = C
T
>(results (>> sum pl boyle))
Rule (RULE-2 . G0011) got (>> (Al P1 BOYLE) (PRESSURE BOYLE)) = U
T

Using RESULTS we can trace the path of the computation.

>>(change-parameter (>> volume boyle) 'u)
U

Changing a parameter first forgets the results of the old
value and then sets the new one.

>(what-is (>> pressure boyle))
(>> (Al P1 BOYLE) (PRESSURE BOYLE)) = D
NIL
> (forget-parameter (- temperature boyle))
((G0008 G0012 G0009) G0009)
>(what-is (>> pressure boyle))

Sorry, I don't know it. I need:
(- (SUM P2 BOYLE) (SUM PI BOYLE))

to use rule: (RULE-2 >> PI BOYLE)
MUST-BE-ENTERED

Figure 8. Qualitative reasoning about properties of a gas.
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GLOSSARY OF FLAGS AND FUNCTIONS

This glossary contains the calls required to run the
interpreter, create networks of constraints, and some relevant

flags.

A.1 Flags

*CONLAN-STATUS* If interpreter ran out of things to do,
QUIESCENT. If a clash occured, it should be
noted by changing this variable to (CLASH
<disputants>)

*CONLAN-CONTRADICTION-HANDLER*
If bound, it must be a function of one argument
that will be called whenever a clash occurs. The
argument is a list of two copies of a cell, with
the conflicting values.

DEBUG-CONLAN If T, a message is printed when each cell is
set. NIL muzzles it.

*DISPUTANTS* A list consisting of a cell and a cell-like
entity which clash. This is the argument to the
contradiction handling code.

*STOP-CONLAN* If T, the interpreter will stop.

A.2 Functions

(CONLAN-INIT) Initializes the interpreter state and destroys
whatever networks currently exist.

(RUN-CONSTRAINTS)
Top level loop for system. Operates like the
normal Lisp read-eval-print loop, except that the
constraint interpreter is fired on each cycle and
allowed to run until it is quiescent or has a
clash.

(CREATE <name> <type>)
Creates a constraint of <type> called <name>.
The name must be atomic and the type must be a
legal constraint prototype.
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(== <A> <B>) Equates <A> and <B>. In particular, whenever a
cell in <A> gets a value the corresponding cell
in <B> will get the same value.

(un== <A> <B>) Removes the equality between <A> and <B>, if
any. It will not work on R=='s used in a
prototype.

(SET-PARAMETER <cell> <value>)
Sets <cell> to <value>, giving the informant as
the user. If an inconsistent value is given a
clash occurs. If <value> is of the form
(<number> <atom>) then <number> is assumed to be
the value and <atom> the units.

(FORGET-PARAMETER <cell>)
If the user was the informant, the value for the
cell is forgotten and all consequences of it
forgotten as well. If the value did not come
from the user nothing happens.

(CHANGE-PARAMETER <cell> <value>)
A combination of FORGET-PARAMETER and
SET-PARAMETER.

(WHAT-IS <cell>)
Types the name and value of the cell if it is
known, or what it would need to compute it if it
is not.

(WHY <cell>) Types the informant of the cell and the values
(if any) the rule used.

(PREMISES <cell>)
Types all of the user supplied parameters that
were used in deducing the value for the cell.

(RESULTS <cell>)
Types what was directly computed using the value
of the cell.

(SUPPLIERS <cell>)
Types the rules that could provide a value for
that cell.

(USERS <cell>) Types the rules that use the cell.

(NEEDS <cell>) Types what is needed to compute a value for the
cell from rules that directly set it.

(UNKNOWN-VALUES <constraint>)
Lists the cells in the constraint that do not yet
have values.
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(KNOWN-VALUES? <constraint>)
Lists the cells in the constraint that have
values.

(INTERNAL-VALUES <constraint>)
Lists the cells that have been set by rules in
the constraint.

(EXTERNAL-VALUES <constraint>)
Lists the cells that have been set by something
outside the constraint.

(PRINT-RULE <rule>)
Pretty-prints the lisp code that comprises the
rule.
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